Unit 5

On completion of the unit you should be able to:

- 1. write the number of particles in a mole.
- 2. calculate the formula (or molecular) mass of compounds.
- 3. solve problems involving conversions between the mass, the number of moles, the number of formula units and the volume (for gaseous substances at standard temperature and pressure).
- 4. given the formula of a compound calculate the percent composition.
- 5. given the composition of a compound calculate the empirical formula.
- 6. given the composition and molecular mass of a molecular compound calculate the molecular formula.
- 7. express solution concentration in moles/liter.
- 8. do calculations involving solutions which have concentrations expressed in moles/liter.
- 9. solve dilution calculation.

THE MOLE CONCEPT	5.7 Molar volume of a gas
5.1 Mole concept	Reading: Hebden – page 82
Reading: Hebden – page 78	5.8 Percent composition of compounds
5.2 Formula mass	Reading: Hebden – page 90
5.3 Information in chemical formulae	5.9 Empirical formula
5.4 From amu to gram	Reading: Hebden - page 91-95
5.5 Molar mass	5.10 Molarity and solution preparation
Reading: Hebden – page 79	Reading: Hebden – page 96-98
5.6 Calculations involving Avogadro's number	5.11 Solution dilution
Reading: Hebden - page 81-88	Reading: Hebden – page 99

Mole Concept

A 'mole' is a unit. We write it behind a numerical value.

0.820 mole NaCl

 $0.230 \text{ mole } H_2O$

Equivalence:

How big is the mole?

Mole Concept

A 'mole' is a unit. We write it behind a numerical value.

0.820 mole NaCl

 $0.230 \text{ mole } H_2O$

Equivalence:

The **mole unit** is used to express:

- 1. A mass quantity
- 2. A counting quantity

Mole: Mass Quantity

What is this mass unit?

Mole: Mass Quantity

Mass unit is amu

1.008 **H** 1 15.999 Atomic mass

What is this mass unit?

unit?

Laboratory-sized sample

Single molecule

1 molecule H₂O

 $18.015 \frac{\text{amu}}{\text{molecule of H}_2\text{O}}$

Chemistry: The Central Science, 9e by Theodore L. Brown, H. Fugene LaMay, Jr., Bruce E. Bursten

SI mass unit is gram

Mass Quantity conversion factor:

1 gram = 6.02×10^{23} amu

amu = <u>a</u>tomic <u>m</u>ass <u>u</u>nit

Mole: Mass Quantity

Mass unit is amu

Conversion Factor:

1 gram = $6.02x10^{23}$ amu

Answer: =
$$2.99 \times 10^{-23} \frac{g}{\text{molecule of H}_2\text{O}}$$

Chemistry: The Central Science, 9e by Theodore L. Brown, H. Fagens Lavley, Jr., Bruce E. Burster

1 molecule H₂O

 $18.015 \frac{\text{amu}}{\text{molecule of H}_2\text{O}}$

amu = <u>a</u>tomic <u>m</u>ass <u>u</u>nit

Do you think we can weigh this in the lab?

Mole: Counting Quantity

Mole: Counting Quantity

What are these?

How do you buy nails?

In Chemistry, we count by weighing because we know each element by its exact mass!

1 Hydrogen atom weighs 1.008 amu.

1.008 amu $\times \frac{1g}{6.02 \times 10^{23} \text{ amu}} = 1.67 \times 10^{-24} \text{ g}$ H

1.67x10⁻²⁴ $\frac{g}{\text{H atom}} \times \frac{6.02 \times 10^{23} \text{ H atom}}{1 \text{ mole H atoms}} = \frac{1.008 \text{ g}}{1 \text{ mole H atoms}}$

1 mole Hydrogen atoms weigh 1.008 g.

1

H atom weighs 1.008 amu.

1 Hydrogen atom weighs 1.008 amu.

1.008

H

1

Atomic mass has two units:

1 gram = 6.02×10^{23} amu

amu atom

$$\frac{g}{\text{mole of atoms}} = \frac{g}{\text{mole}}$$

1 mole Hydrogen atoms weighs 1.008 g.

1 mole

H atoms weighs 1.008 g.

Q1: How much does 1 molecule of water weigh, in amu?

$$18.015 \frac{\text{amu}}{\text{molecule of H}_2\text{O}}$$

Q2: How much does 1 mole of water weigh, in gram?

$$\frac{18.015 - \frac{g}{\text{mole of H}_2O}}{\text{mole of H}_2O}$$

We can weigh this!!

If the density of water is 1.00 g/mL, 1 mole of water = 18.0 mL!! Try some mole concept practice problems in Maple TA.

Use Dimensional Analysis in your calculations!!