Tutorial_0010

1. Balance these chemical equations.

(a)
$$Na_2SO_4(s) + C(s) \longrightarrow Na_2S(s) + CO_2(g)$$

(b)
$$Ag_2SO_4$$
 (aq) + BaI_2 (aq) \longrightarrow $BaSO_4$ (s) + AgI (s)

(c)
$$HCI(g) + O_2(g) \longrightarrow H_2O(I) + CI_2(g)$$

(d)
$$CH_4(g) + O_2(g) \longrightarrow CO_2(g) + H_2O(l)$$

(e)
$$Cl_2(g) + P_4(s) \longrightarrow PCl_3(l)$$

- (f) Sodium metal reacts with liquid water produces aqueous sodium hydroxide, NaOH, and hydrogen gas.
- (g) Zinc metal dissolves in hydrochloric acid solution, HCl, produces zinc (II) chloride solution and hydrogen gas.
- (h) Write the balanced equation for the combustion of benzene, C_6H_6 .
- **2.** Classify and balance each reaction as being combination, decomposition, single replacement, or double replacement.

(a)
$$Mg(s) + H_2O(g) \longrightarrow Mg(OH)_2(s) + H_2(g)$$

(b)
$$C_3H_8(g) + O_2(g) \longrightarrow CO_2(g) + H_2O(l)$$

(c)
$$Ba(OH)_2(s) + H_3PO_4(aq) \longrightarrow Ba_3(PO_4)_2(aq) + H_2O(l)$$

(d)
$$NaClO_3$$
 (aq) ——NaCl (aq) + O_2 (g)

(e)
$$SO_2(g) + O_2 \longrightarrow SO_3(g)$$

(f)
$$AgNO_3$$
 (aq) + AI (s) ——— $AI(NO_3)_3$ (aq) + Ag (s)

(g)
$$H_2SO_4$$
 (aq) + KOH (aq) $\longrightarrow K_2SO_4$ (aq) + H_2O (l)

3. Chlorine gas can be made in the laboratory by the reaction of hydrochloric acid and manganese (IV) oxide:

$$4HCl(aq) + MnO_2(s) \rightarrow MnCl_2(aq) + 2H_2O(g)Cl_2(g)$$

When 1.82 mol of HCl reacts with excess MnO₂,

- How many moles of Cl2 form? (0.45 mol Cl2)
- How many grams of Cl2 form? (32.3 g Cl2)
- 4. Bismuth oxide reacts with carbon to form bismuth metal:

$$Bi_2O_3(s) + 3C(s) \rightarrow 2Bi(s) + 3CO(g)$$

When 352 g of Bi₂O₃ reacts with excess carbon,

- How many moles of Bi2O3 react? (0.755 moles Bi2O3)
- How many moles of Bi form? (1.51 moles Bi)
- 5. When heated, potassium nitrate decomposes producing potassium oxide and gaseous nitrogen and oxygen:

$$4KNO_3(s) \rightarrow 2K_2O(s) + 2N_2(q) + 5O_2(q)$$

To produce 88.6 kg of oxygen,

- How many moles of KNO3 must be heated?
- How many grams of KNO3 must be heated?

(2.22x10³ mol KNO3; 2.24x10⁵ g KNO3)

6. Calculate the mass of each product formed when $33.61\,g$ of diborane (B2H6) reacts with excess water:

$$B_2H_6(g) + H_2O(I) \rightarrow H_3BO_3(s) + H_2(g)$$
 (unbalanced)

(150.2 g H₃BO₃; 14.69 g H₂)